-
-
Save sayakpaul/27aec6bca7eb7b0e0aa4112205850335 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tomesd | |
import torch | |
import torch.utils.benchmark as benchmark | |
from diffusers import StableDiffusionPipeline | |
def benchmark_torch_function(f, *args, **kwargs): | |
t0 = benchmark.Timer( | |
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} | |
) | |
return round(t0.blocked_autorange(min_run_time=1).mean, 2) | |
model_id = "runwayml/stable-diffusion-v1-5" | |
prompt = "a photo of an astronaut riding a horse on mars" | |
steps = 25 | |
num_images_per_prompt = 1 | |
dtype = torch.float16 | |
resolution = 1024 | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", torch_dtype=dtype, safety_checker=None | |
).to("cuda") | |
pipe.set_progress_bar_config(disable=True) | |
# Vanilla | |
print("Running benchmark with vanilla pipeline...") | |
f = lambda: pipe( | |
prompt, | |
height=resolution, | |
width=resolution, | |
num_inference_steps=steps, | |
num_images_per_prompt=num_images_per_prompt, | |
).images | |
time_vanilla = benchmark_torch_function(f) | |
# With ToMe | |
print("Running benchmark with ToMe patched pipeline...") | |
tomesd.apply_patch(pipe, ratio=0.5) | |
f = lambda: pipe( | |
prompt, | |
height=resolution, | |
width=resolution, | |
num_inference_steps=steps, | |
num_images_per_prompt=num_images_per_prompt, | |
).images | |
time_tome = benchmark_torch_function(f) | |
# With ToMe + xformers | |
print("Running benchmark with ToMe patched + xformers enabled pipeline...") | |
tomesd.remove_patch(pipe) | |
pipe.enable_xformers_memory_efficient_attention() | |
tomesd.apply_patch(pipe, ratio=0.5) | |
f = lambda: pipe( | |
prompt, | |
height=resolution, | |
width=resolution, | |
num_inference_steps=steps, | |
num_images_per_prompt=num_images_per_prompt, | |
).images | |
time_tome_xformers = benchmark_torch_function(f) | |
print( | |
f"Model: {model_id}, dtype: {dtype}, steps: {steps}, num_images_per_prompt: {num_images_per_prompt}, resolution: {resolution} x {resolution}" | |
) | |
print(f"Vanilla : {time_vanilla} s") | |
print(f"ToMe : {time_tome} s") | |
print(f"ToMe + xformers: {time_tome_xformers} s") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment